深层语言语言模型(LMS)如Elmo,BERT及其继任者通过预先训练单个模型来迅速缩放自然语言处理的景观,然后是任务特定的微调。此外,像XLM-R和MBERT这样的这种模型的多语言版本使得有希望的零射击交叉传输导致,可能在许多不足和资源不足的语言中实现NLP应用。由于此初步成功,预先接受的模型被用作“通用语言模型”作为不同任务,域和语言的起点。这项工作通过识别通用模型应该能够扩展的七个维度来探讨“普遍性”的概念,即同样良好或相当良好地执行,在不同的环境中有用。我们概述了当前支持这些维度的模型性能的当前理论和经验结果,以及可能有助于解决其当前限制的扩展。通过这项调查,我们为理解大规模上下文语言模型的能力和限制奠定了基础,并帮助辨别研究差距和未来工作的方向,使这些LMS包含多样化和公平的应用,用户和语言现象。
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译
Sarcasm is a form of irony that involves saying or writing something that is opposite or opposite to what one really means, often in a humorous or mocking way. It is often used to mock or mock someone or something, or to be humorous or amusing. Sarcasm is usually conveyed through tone of voice, facial expressions, or other forms of nonverbal communication, but it can also be indicated by the use of certain words or phrases that are typically associated with irony or humor. Sarcasm detection is difficult because it relies on context and non-verbal cues. It can also be culturally specific, subjective and ambiguous. In this work, we fine-tune the RoBERTa based sarcasm detection model presented in Abaskohi et al. [2022] to get to within 0.02 F1 of the state-of-the-art (Hercog et al. [2022]) on the iSarcasm dataset (Oprea and Magdy [2019]). This performance is achieved by augmenting iSarcasm with a pruned version of the Self Annotated Reddit Corpus (SARC) (Khodak et al. [2017]). Our pruned version is 100 times smaller than the subset of SARC used to train the state-of-the-art model.
translated by 谷歌翻译
In this work, we introduce IndicXTREME, a benchmark consisting of nine diverse tasks covering 18 languages from the Indic sub-continent belonging to four different families. Across languages and tasks, IndicXTREME contains a total of 103 evaluation sets, of which 51 are new contributions to the literature. To maintain high quality, we only use human annotators to curate or translate\footnote{for IndicXParaphrase, where an automatic translation system is used, a second human verification and correction step is done.} our datasets. To the best of our knowledge, this is the first effort toward creating a standard benchmark for Indic languages that aims to test the zero-shot capabilities of pretrained language models. We also release IndicCorp v2, an updated and much larger version of IndicCorp that contains 20.9 billion tokens in 24 languages. We pretrain IndicBERT v2 on IndicCorp v2 and evaluate it on IndicXTREME to show that it outperforms existing multilingual language models such as XLM-R and MuRIL.
translated by 谷歌翻译
Finetuning image-text models such as CLIP achieves state-of-the-art accuracies on a variety of benchmarks. However, recent works like WiseFT (Wortsman et al., 2021) and LP-FT (Kumar et al., 2022) have shown that even subtle differences in the finetuning process can lead to surprisingly large differences in the final performance, both for in-distribution (ID) and out-of-distribution (OOD) data. In this work, we show that a natural and simple approach of mimicking contrastive pretraining consistently outperforms alternative finetuning approaches. Specifically, we cast downstream class labels as text prompts and continue optimizing the contrastive loss between image embeddings and class-descriptive prompt embeddings (contrastive finetuning). Our method consistently outperforms baselines across 7 distribution shifts, 6 transfer learning, and 3 few-shot learning benchmarks. On WILDS-iWILDCam, our proposed approach FLYP outperforms the top of the leaderboard by $2.3\%$ ID and $2.7\%$ OOD, giving the highest reported accuracy. Averaged across 7 OOD datasets (2 WILDS and 5 ImageNet associated shifts), FLYP gives gains of $4.2\%$ OOD over standard finetuning and outperforms the current state of the art (LP-FT) by more than $1\%$ both ID and OOD. Similarly, on 3 few-shot learning benchmarks, our approach gives gains up to $4.6\%$ over standard finetuning and $4.4\%$ over the state of the art. In total, these benchmarks establish contrastive finetuning as a simple, intuitive, and state-of-the-art approach for supervised finetuning of image-text models like CLIP. Code is available at https://github.com/locuslab/FLYP.
translated by 谷歌翻译
Tasks critical to enterprise profitability, such as customer churn prediction, fraudulent account detection or customer lifetime value estimation, are often tackled by models trained on features engineered from customer data in tabular format. Application-specific feature engineering adds development, operationalization and maintenance costs over time. Recent advances in representation learning present an opportunity to simplify and generalize feature engineering across applications. When applying these advancements to tabular data researchers deal with data heterogeneity, variations in customer engagement history or the sheer volume of enterprise datasets. In this paper, we propose a novel approach to encode tabular data containing customer transactions, purchase history and other interactions into a generic representation of a customer's association with the business. We then evaluate these embeddings as features to train multiple models spanning a variety of applications. CASPR, Customer Activity Sequence-based Prediction and Representation, applies Transformer architecture to encode activity sequences to improve model performance and avoid bespoke feature engineering across applications. Our experiments at scale validate CASPR for both small and large enterprise applications.
translated by 谷歌翻译
Cement is the most used construction material. The performance of cement hydrate depends on the constituent phases, viz. alite, belite, aluminate, and ferrites present in the cement clinker, both qualitatively and quantitatively. Traditionally, clinker phases are analyzed from optical images relying on a domain expert and simple image processing techniques. However, the non-uniformity of the images, variations in the geometry and size of the phases, and variabilities in the experimental approaches and imaging methods make it challenging to obtain the phases. Here, we present a machine learning (ML) approach to detect clinker microstructure phases automatically. To this extent, we create the first annotated dataset of cement clinker by segmenting alite and belite particles. Further, we use supervised ML methods to train models for identifying alite and belite regions. Specifically, we finetune the image detection and segmentation model Detectron-2 on the cement microstructure to develop a model for detecting the cement phases, namely, Cementron. We demonstrate that Cementron, trained only on literature data, works remarkably well on new images obtained from our experiments, demonstrating its generalizability. We make Cementron available for public use.
translated by 谷歌翻译
Bayesian Inference offers principled tools to tackle many critical problems with modern neural networks such as poor calibration and generalization, and data inefficiency. However, scaling Bayesian inference to large architectures is challenging and requires restrictive approximations. Monte Carlo Dropout has been widely used as a relatively cheap way for approximate Inference and to estimate uncertainty with deep neural networks. Traditionally, the dropout mask is sampled independently from a fixed distribution. Recent works show that the dropout mask can be viewed as a latent variable, which can be inferred with variational inference. These methods face two important challenges: (a) the posterior distribution over masks can be highly multi-modal which can be difficult to approximate with standard variational inference and (b) it is not trivial to fully utilize sample-dependent information and correlation among dropout masks to improve posterior estimation. In this work, we propose GFlowOut to address these issues. GFlowOut leverages the recently proposed probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over dropout masks. We empirically demonstrate that GFlowOut results in predictive distributions that generalize better to out-of-distribution data, and provide uncertainty estimates which lead to better performance in downstream tasks.
translated by 谷歌翻译
道路车辙是严重的道路障碍,可能导致早期和昂贵的维护成本的道路过早失败。在过去的几年中,正在积极进行使用图像处理技术和深度学习的道路损害检测研究。但是,这些研究主要集中在检测裂缝,坑洼及其变体上。很少有关于探测道路的研究。本文提出了一个新颖的道路车辙数据集,其中包括949张图像,并提供对象级别和像素级注释。部署了对象检测模型和语义分割模型,以检测所提出的数据集上的道路插道,并对模型预测进行了定量和定性分析,以评估模型性能并确定使用拟议方法检测道路插道时面临的挑战。对象检测模型Yolox-S实现了61.6%的Map@iou = 0.5,语义分割模型PSPNET(RESNET-50)达到54.69,精度为72.67,从而为将来的类似工作提供了基准的准确性。拟议的道路车辙数据集和我们的研究结果将有助于加速使用深度学习发现道路车辙的研究。
translated by 谷歌翻译